Ray scattering model for spherical transparent particles.
نویسندگان
چکیده
We propose a model for the reflectance of a particle medium made of identical, large, spherical, and absorbing particles in a clear binder. A 3D geometrical description of light scattering is developed by relying on the laws of geometrical optics. The amount of light backscattered by a single particle is determined as a function of its absorbance and refractive index. Then, we consider a set of coplanar particles, called a particle sublayer, whose reflectance and transmittance are functions of the particle backscattering ratio and the particle concentration. The reflectance of an infinite particle medium is derived from a description of multiple reflections and transmissions between many superposed particle sublayers. When the binder has a refractive index different from that of air, the medium's reflectance factor accounts for the multiple reflections occurring beneath the air-binder interface as well as for the measuring geometry. The influences of various parameters, such as the refractive indices and the particle absorption coefficient, are examined.
منابع مشابه
A Computer Modeling of Mie-Scattering by Spherical Droplets Within the Atmosphere
The Earth’s atmosphere is an environment replete with particles of differ-ent sizes with various refractive indices which affect the light radiation traveling through it. The Mie scattering theory is one of the well-known light scattering techniques ap-plicable to modeling of electromagnetic scattering from tiny atmospheric particles or aerosols floating in the air or within the clouds. In this...
متن کاملDetermination of the size distribution of monodesperse and bidisperse mixtures of spherical particles in the nanometer and submicron size range by applying cumulant analysis and contin algorithm in dynamic light scattering
Determination of particle size is one of the major needs in the industry and biotechnology. Dynamic light scattering (DLS) is a widely used technique for determining size distribution of spherical particle in nanometer and submicron size range. In this method, there are different algorithms for determining the size and size distribution of particles, which are selected according to the required...
متن کاملA Comparison between Kubelka-Munk and Geometric Models for Prediction of Reflectance Factor of Transparent Fibers
The reflectance factors of transparent fibers, free delustering agent, are predicted by geometric as well as Kubelka-Munk models. Transparent fibers are simulated by a net of glass capillary tubes containing different solutions of dyestuffs. Based on the results, prediction of the reflectance factor of capillary net by geometric model is relatively better than those obtained from Kubelka-Munk...
متن کاملA Comparison between Kubelka-Munk and Geometric Models for Prediction of Reflectance Factor of Transparent Fibers
The reflectance factors of transparent fibers, free delustering agent, are predicted by geometric as well as Kubelka-Munk models.
 Transparent fibers are simulated by a net of glass capillary tubes containing different solutions of dyestuffs. Based on the results, prediction of the reflectance factor of capillary net by geometric model is relatively better than those obtained from Kubelka-Mu...
متن کاملEffect of solid conductivity on radiative heat transfer in packed beds
THE SOLUTION of the radiative heat transfer problem in porous media has received considerable attention for a number of years (e.g.. Vortmeyer [I], Tien and Drolen [2], ’ nd Kaviany and Singh [3]). The medium may be considere d as a continuum or as a discrete collection of particles, depending on whether the packing lies in the dependent or independent scattering/absorption range. Independent s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Optical Society of America. A, Optics, image science, and vision
دوره 25 7 شماره
صفحات -
تاریخ انتشار 2008